a) Đặt \(7^x=t\left(t>0\right)\)
Phương trình trở thành: \(7t^2-8t+1=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{1}{7}\end{matrix}\right.\).
Với \(t=1\)\(\Rightarrow7^x=1\)\(\Leftrightarrow x=0\).
Với \(t=\dfrac{1}{7}\Leftrightarrow7^x=7^{-1}\)\(\Leftrightarrow x=-1\).
b) Đặt \(3^x=t\left(t>0\right)\)
Phương trình trở thành: \(3t^2-9t+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=1\end{matrix}\right.\)
- Với \(t=2\) thì \(3^x=2\Leftrightarrow x=log^2_3\).
Với \(t=1\) thì \(3^x=1\Leftrightarrow x=0\).