cho a, b, c la cac so thuc duong thoa man a + b + c =abc chung minh rang :
\(\frac{1}{a^2\left(1+bc\right)}+\frac{1}{b^2\left(1+ac\right)}+\frac{1}{c^2\left(1+ab\right)}\le\frac{1}{4}\)
Cho các số thực dương a, b, c. Chứng minh rằng
a, \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge a+b+c\)
b, \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
Cho biểu thức A = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
B = \(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a > 0, a ≠ 1
a, Rút gọn biểu thức A và B
b, So sánh A và B
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)
Cho các số a,b,c dương. Chứng minh rằng \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2\sqrt{a}}{a^3+b^2}+\frac{2\sqrt{b}}{b^3+c^2}+\frac{2\sqrt{c}}{c^3+a^2}\)
Cho \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
Tính \(F=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\)
Rút gọn
\(\frac{1}{(a+b)^3}(\frac{1}{a^3}+\frac{1}{b^3})+\frac{3}{(a+b)^4}(\frac{1}{a^2}+\frac{1}{b^2})+ \frac{6}{(a+b)^5}(\frac{1}{a}+\frac{1}{b})\)
Cho a,b,c>0 chứng minh:
\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)