Bài tập cuối chương VII

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

a) Độ cao \(AN\) và chiều dài bóng nắng của các đoạn thẳng \(AN,BN\) trên mặt đất được ghi lại như trong Hình 6. Tính chiều cao \(AB\)của cái cây.

b) Một tòa nhà cao 24m, đổ bóng nắng dài 36m trên đường như Hình 7. Một người cao 1,6m muốn đứng trong bóng dâm của toàn nhà. Hỏi người đó có thể đứng cách tòa nhà xa nhất là bao nhiêu mét?

Nguyễn Lê Phước Thịnh
13 tháng 9 2023 lúc 22:32

a: Xét ΔABC có DE//BC

nên AN/AB=AM/AC

=>1,5/AB=2,4/5,3

=>\(AB\simeq3,3125\left(m\right)\)

b: 

Xét ΔABC có DE//BC

nên DE/BC=AE/AC=(AC-CE)/AC

=>36-x=1,6*36/24=2.4

=>x=33,6(m)

Kiều Sơn Tùng
13 tháng 9 2023 lúc 22:32

a) Xét tam giác \(ABC\) có \(MN//BC\) nên theo định lí Thales ta có:

\(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}} \Leftrightarrow \frac{{1,5}}{{AB}} = \frac{{2,4}}{{2,4 + 2,9}} \Rightarrow AB = \frac{{1,5.\left( {2,4 + 2,9} \right)}}{{2,4}} = 3,3125\)

Vậy chiều cao \(AB\)của cái cây là 3,3125m.

b) Đặt tên các điểm như hình vẽ

Xét tam giác \(ABC\) có \(DE//BC\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{DE}}{{BC}} = \frac{{AE}}{{AC}} = \frac{{AC - CE}}{{AC}} \Leftrightarrow \frac{{1,6}}{{24}} = \frac{{36 - x}}{{36}}\)

\( \Rightarrow 36 - x = \frac{{1,6.36}}{{24}} \Leftrightarrow x = 36 - \frac{{1,6.36}}{{24}} = 33,6\)

Vậy người đó có thể đứng xa tòa nhà nhất là 33,6m.


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết