a) \(\dfrac{3x-4}{x+1}=2\)
⇔ \(2x+2=3x-4\)
⇒ \(x=6\)
b: \(\Leftrightarrow4\left(2x^2-3\right)=8x^2+3x\)
=>3x=-12
hay x=-4(nhận)
c: \(\Leftrightarrow6x^2+9x+4x+6-6=0\)
=>x(6x+13)=0
=>x=0 hoặc x=-13/6
a) \(\dfrac{3x-4}{x+1}=2\)
⇔ \(2x+2=3x-4\)
⇒ \(x=6\)
b: \(\Leftrightarrow4\left(2x^2-3\right)=8x^2+3x\)
=>3x=-12
hay x=-4(nhận)
c: \(\Leftrightarrow6x^2+9x+4x+6-6=0\)
=>x(6x+13)=0
=>x=0 hoặc x=-13/6
5.c) \(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x-1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
6.b) \(\dfrac{4}{2x^3+3x^2-8x-12}-\dfrac{1}{x^2-4}-\dfrac{4}{2x^2+7x+6}+\dfrac{1}{2x+3}=0\)
1) \(\dfrac{7x-3}{x-1}\) = \(\dfrac{2}{3}\)
2) \(\dfrac{2\left(3-7x\right)}{1+x}\) = \(\dfrac{1}{2}\)
3) \(\dfrac{x^{2^{ }}-6}{x}\) = x + \(\dfrac{3}{2}\)
4) \(\dfrac{5}{3x+2}\) = 2x - 1
5) \(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}\) = 0
6) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
Giải phương trình:
a) \(\dfrac{2x-5}{x+5}\) = 4
b) \(\dfrac{x^2-4}{x}\) = \(\dfrac{2x+3}{2}\)
c) \(\dfrac{2x+3}{2x-1}\) = \(\dfrac{x-3}{x+5}\)
d) \(\dfrac{3x-2}{x+7}\) = \(\dfrac{6x+1}{2x-3}\)
\(a,\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
b,\(\dfrac{x-15}{23}+\dfrac{x-23}{15}-2=0\)
c,\(\dfrac{3\left(2x+1\right)}{4}-\dfrac{5x+3}{6}+\dfrac{x+1}{3}=x+\dfrac{7}{12}\)
B1 : Giải phương trình
a. \(\dfrac{x-2}{x-4}-\dfrac{1}{x-2}=-2\)
b. \(\dfrac{x-2}{x+3}-\dfrac{x+1}{3-x}=\dfrac{2x^2+6}{x^2-9}\)
c. \(\dfrac{2x-1}{3}-\dfrac{x-6}{4}=\dfrac{3x-2}{2}\)
d. \(\dfrac{3x-1}{4}+\dfrac{8x-21}{20}=\dfrac{3\left(x+2\right)}{5}-2\)
a. \(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}=\dfrac{9}{x^2-9}\)
b. \(\dfrac{x+2}{4}-x+3=\dfrac{1-x}{8}\)
c. / 2x + 3 / = x + 2
d. \(\dfrac{2x-1}{3}-x-1=\dfrac{x+2}{4}\)
e.\(\dfrac{x-4}{x-1}+\dfrac{x+4}{x+1}=2\)
f. \(\dfrac{3x}{x-2}+\dfrac{3x}{\left(x-2\right)\left(x-5\right)}=\dfrac{x}{x-5}\)
Giải các phương trình sau:
a) \(\dfrac{1}{4z^{2}-12z+9}-\dfrac{3}{9-4z^{2}}=\dfrac{4}{4z^{2}+12z+9}\)
b) \(\dfrac{2}{(1-3u)(3u+11)}=\dfrac{1}{9u^{2}-6u+1}-\dfrac{3}{(3u+11)^{2}}\)
c) \(\dfrac{4}{2x^{3}+3x^{2}-8x-12}-\dfrac{1}{x^{2}-4}-\dfrac{4}{2x^{2}+7x+6}+\dfrac{1}{2x+3}=0\)
Help me... Giup đk chừng nào hay chừng đó ạ.
Bài 1:a, \(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\)
b, \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c,\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
d,\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\)
e,\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\)
f,\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)
g,\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\)
h,\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
i,\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\)
j,\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\)
\(a.x+\dfrac{2x+\dfrac{x-1}{5}}{3}\)
\(b.\dfrac{3x-1-\dfrac{x-1}{2}}{3}-\dfrac{2x+\dfrac{1-2x}{3}}{2}=\dfrac{\dfrac{3x-1}{2}-6}{5}\) giải pt