a) Vì x + y = 1 => ( x + y )3 = 1
=> x3 + 3x2y + 3xy2 + y3 = 1
=> x3 + y3 + 3xy ( x + y ) = 1
=> x3 + y3 +3xy = 1 (do x+y=1)
b) x-y=1 => (x-y)3=1
=> x3 - 3x2y + 3xy2 -y3 = 1
=> x3 -y3 - 3xy (x - y) = 1
=> x3 - y3 -3xy =1 (do x-y=1)
x + y = 1
=> (x + y)3 = 1
<=> x3 + y3 + 3x2y + 3xy2 = 1
<=> x3 + y3 + 3xy (x+y) = 1
<=> x3 + y3 + 3xy = 1
Vậy ... = 1
x - y = 1
=> (x - y)3 = 1
<=> x3 - y3 - 3x2y + 3xy2 = 1
<=> x3 - y3 - 3xy (x - y) = 1
<=> x3 - y3 - 3xy = 1
Vậy ... = 1
a) Ta có: x3+y3+3xy=(x+y)3-3xy(x+y)+3xy
=13-3xy+3xy
=1
b) Ta có: x3-y3-3xy=(x-y)3+3xy(x-y)-3xy
=13+3xy-3xy
=1