Cho bốn cung trên một đường tròn định hướng
\(\alpha=\dfrac{-5\pi}{6}\), \(\beta=\dfrac{\pi}{3}\)\(\gamma=\dfrac{25\pi}{3}\), \(\delta=\dfrac{19\pi}{6}\). Các cung nào có các điểm cuối trùng nhau. Giải thích rõ
a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
a) tính các giá trị lượng giác của góc alpha biết
1. cos \(\alpha\) = \(\dfrac{-2}{\sqrt{5}}\) và \(\dfrac{-\pi}{2}\)< \(\alpha\) < 0
2. tan \(\alpha\) = - 2 và \(\dfrac{\pi}{2}\)< \(\alpha\) < \(\pi\)
3. cot \(\alpha\) = 3 và \(\pi\) < \(\alpha\) < \(\dfrac{3\pi}{2}\)
b)
1. Cho tan x = - 2 và 90° < x < 180°. Tính A = \(\dfrac{2\sin x+\cos x}{\cos x-3\sin x}\)
2. Cho tan x = - 2 . Tính B = \(\dfrac{2\sin x+3\cos x}{3\sin x-2\cos x}\)
Bài 7 (trang 140 SGK Đại Số 10): Trên đường tròn lượng giác cho điểm M xác định bởi sđ cung AM = α (0 < α < π/2). Gọi M1, M2, M3 lần lượt là điểm đối xứng của M qua trục Ox, trục Oy và gốc tọa độ. Tìm số đo các cung AM1, AM2, AM3.
*HỎI*: bài này số đo các cung AM1 thì dễ rồi nhưng mình lại không hiểu tại sao không tính số đo các cung AM2, AM3 khi quay theo chiều âm? giải thích và giải giúp mình theo chiều âm_nếu được giúp mình
(mình làm quay chiều âm gặp nhiều rắc rối để quy định số đo của nó là âm nhưng đề bài không quy định quay theo chiều nào)
(Lời giải của các trang mạng: sđ cung AM3 = π + α + k2π, k thuộc Z)
đừng trả lời lạc đề cảm ơn
cho góc α thỏa mãn \(\dfrac{\pi}{2}\)<α<π và \(\sin\dfrac{\alpha}{2}\)= \(\dfrac{2}{\sqrt{5}}\) .Tính giá trị biểu thức A= \(\tan\left(\dfrac{\alpha}{2}-\dfrac{\pi}{4}\right)\)
chứng minh rằng:
\(\frac{1-cos\alpha+cos2\alpha}{sin2\alpha-sin\alpha}\)= cotα ,với α ≠ kπ ( k ∈ Z) và α ≠ \(\pm\) \(\frac{\pi}{3}\) +l2π ( l ∈ Z)
Đơn giản các biểu thức sau:
G = \(cos\left(\alpha-5\pi\right)+sin\left(-\dfrac{3\pi}{2}+\alpha\right)-tan\left(\dfrac{\pi}{2}+\alpha\right).cot\left(\dfrac{3\pi}{2}-\alpha\right)\)
H = \(cot\left(\alpha-2\pi\right).cos\left(\alpha-\dfrac{3\pi}{2}\right)+cos\left(\alpha-6\pi\right)-2sin\left(\alpha-\pi\right)\)
1)Cho góc \(\alpha\) thõa mãn \(\frac{\pi}{2}< \alpha< 2\pi\) và \(tan\left(\alpha+\frac{\pi}{4}\right)=1\) . Tính P = \(cos\left(\pi-\frac{\pi}{6}\right)\) + \(sin\alpha\)
2)Cho góc \(\alpha\) thõa mãn \(\frac{\pi}{2}< \alpha< 2\pi\) và \(cot\left(\alpha+\frac{\pi}{3}\right)=-\sqrt{3}\) . Tính P = \(sin\left(\pi+\frac{\pi}{6}\right)\) + cos\(\alpha\)
a) Biến đổi \(\sin\alpha-1\)thành tích
b) Rút gọn biểu thức \(P=\dfrac{\cos\alpha+2\cos3\alpha+\cos5a}{\sin\alpha+2\sin3\alpha+\sin5a}\)
c) Tính giá trị biểu thức \(P=\sin30.\cos60+\sin60.\cos30\)
d) Giá đúng của \(cos\dfrac{2\pi}{7}+\cos\dfrac{4\pi}{7}+\cos\dfrac{6\pi}{7}\)
e) Giá trị đúng của \(\tan\dfrac{\pi}{24}+\tan\dfrac{7\pi}{24}\)