a)Ta có : \(a=2005\)
\(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{2005}{b}+\dfrac{b}{c}+\dfrac{c}{2005}=\dfrac{2005+b+c}{b+c+2005}=1\)
\(\Rightarrow\dfrac{b}{2005}=1\Rightarrow b=2005\)
\(\Rightarrow\dfrac{c}{2005}=1\Rightarrow c=\dfrac{1}{2005}\)
Vậy .................................
a) \(\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{a} = \dfrac{{a + b + c}}{{b + c + a}} = 1\)
\(\Rightarrow a = b = c\)
Mà \(a=2005\)
\(\Rightarrow b=c=2005\)
b) \(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{2268-28-36-45-60-84-126-210-420-1260}{2520}\)
\(=\dfrac{0}{2520}\)
\(=0\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Leftrightarrow=\dfrac{a+b+c}{b+c+a}\)(dựa vào t/c dãy tỉ số=nhau)
\(=1\)
\(\Leftrightarrow a=b=c=2005\)
\(\dfrac{9}{10}-\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{30}-\dfrac{1}{20}-\dfrac{1}{12}-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=0\)