Ta có \(sinx-cosx=\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\)
a, Do \(0< x< \dfrac{\pi}{4}\Rightarrow-\dfrac{\pi}{4}< x-\dfrac{\pi}{4}< 0\)
⇒ \(\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\) < 0
⇒ sinx - cosx < 0
=> sinx < cosx
b, Do \(\dfrac{\pi}{4}< x< \dfrac{\pi}{2}\Rightarrow0< x-\dfrac{\pi}{4}< \dfrac{\pi}{4}\)
⇒ \(\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)\) > 0
⇒ sinx - cosx > 0
=> sinx > cosx