Ta có :
\(B=3+3^2+3^3+.....+3^{2015}\)
\(\Leftrightarrow3B=3^2+3^3+.........+3^{2015}+3^{2016}\)
\(\Leftrightarrow3B-B=\left(3^2+3^3+.....+3^{2016}\right)-\left(3+3^2+......+3^{2015}\right)\)
\(\Leftrightarrow2B=3^{2016}-3\)
\(\Leftrightarrow2B+3=3^{2016}\)
Lại có : \(2B+3=3^x\)
\(\Leftrightarrow3^{2016}=3^x\Leftrightarrow x=2016\)
Vậy...