Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
Cho hình vuông ABCD. Gọi E là một điểm thuộc cạnh BC( E khác BC). Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a, Chứng minh: AI=AE
b, Chứng minh: AE.AK=AD.IK
c, Chứng minh: \(\dfrac{1}{AE^2}+\dfrac{1}{AK^2}\) không đổi khi E thay đổi trên cạnh BC
d, Chứng minh rằng: \(\dfrac{1}{AE}+\dfrac{1}{AK}=\dfrac{\sqrt{2}}{AM}\)
e, Tìm vị trí của E để độ dài đoạn thẳng IK ngắn nhất
Cho hình vuông ABCD . Gọi E là một điểm thuộc cạnh BC ( E khác B ) Tia AE cắt tia DC tại K. Kẻ đường thẳng d đi qua A và vuông góc với AE. Đường thẳng d cắt đường thẳng CD tại I. Đường thẳng đi qua A và vuông góc với IE cắt đường thẳng CD tại M.
a) Chứng minh AI =AE
b) Chứng minh AE. AK=AD.IK
c) Chứng minh 1/ AE^2 + 1/ AK^2 không đổi khi E thay đổi trên BC
d Chứng minh 1/ AE +1/AK =căn 2/ AM
Cho tam giác ABC vuông tại A có góc B = 2 góc C và BC = a (a > 0)
a/ Tính AB theo a
b/ Kẻ đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh AE.AB=À=AC
c/ Qua A kẻ đường thẳng BC, cắt tia phân giác của góc ABC tại D. Gọi I,K là trung điểm của AC,BD. Tính IK theo a.
Help me I need right now PLEASE!!!
c) Chứng minh: CD.CB = \(\dfrac{AC^3}{MN}\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC=8cm, BH=2cm. a) Tính độ dài các đoạn thẳng AB, AC, AH b) Trên cạnh AC lấy điểm K (K khác A, K khác C), gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC từ đó suy ra AB = BC. sin góc BDH
cho ΔABC có góc A =105°,góc B=60°,AB=a. lấy điểm E trên BC sao cho BE=a. Kẻ ED song song với AB(D thuộc AD). AH là hình chiếu của A trên BC(H thuộc BC). Đường thẳng qua A vuông góc với AC cắt BC tại F
a)chứng minh tam giác ABE đều và tính AH theo a
b)chứng minh
góc EAD=góc EAF=45°. từ đó chứng minh ΔAEF=ΔAED
c)chứng minh: 1/AD2+1/AC2=3/4a2
Giúp mình với
Cho tam giác MNP vuông tại M (MN-MP), đường cao MH. Gọi D và E lần lượt là hình chiếu của H trên MN và MP. 2/ Chứng minh: MD.MN =ME, MP MN² b/ Chứng minh: MP4 PH và chứng minh MH = NPNDPE NH có Qua M kẻ đường vuông góc với DE cắt NP tại K. Chứng minh Kỉ là trung điểm Nh d/ Cho góc P=a; NP = a. Từ M kẻ đường vuông góc với MK cắt tia PN tại I. Chứng minh PI a.(cos 2a+1) 2cos 2a
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A, cắt tia CD tại F.
a) Chứng minh tam giác AEF cân.
b) Kẻ đường trung tuyến AI của tam giác AEF . Tia AI cắt cạnh CD tại K. Chứng minh tam giác AKF đồng dạng với tam giác CAF.
c) Cho AB = 4 cm, \(BE=\dfrac{3}{4}BC\). Tính diện tích của tam giác AEF.
d) Gọi J là giao điểm của tia AE và tia DC. Chứng minh rằng tổng \(\dfrac{1}{AE^2}+\dfrac{1}{AJ^2}\) không đổi khi E di động trên cạnh BC.
Cho hình chữ nhật ABCD có AD < AB . Qua C kẻ đường thẳng vuông góc với AC cắt đường thẳng AD, AB lần lượt tại M và N
a, Cho AD = 6cm, AB = 8cm. Tính DM, AN, góc AMN ( số đo góc làm tròn đến độ )
b, CM: AB . AN = AD . AM
c, CM: CB.CD = \(\frac{AC^3}{MN}\)
d, Gọi E là trung điểm MC. Kẻ CH vuông góc DB tại H. Cho EB cắt CH tại K. CM: K là trung điểm của CH