a )n = 0 => (1) = 9 .1 + 18 = 27 chia hết cho 27
n = 1 => (1) = 9 .10 + 18 = 108 chia hết cho 27
đặt k = n , ta giả sử 9.10^k + 18 chia hết cho 27
ta chứng minh 9.10^(k + 1) +18 chia hết cho 27
= 10.9.10^(k) +18 = 9.10^k + 18 + 9.9.10^k = { 9.10^k + 18 } + { 81.10^k }
cả 2 nhóm đều chia hết cho 27 => đpcm
b ) - Với \(n=1\) thì \(16^n-15n-1=16-15-1=0⋮225\)
- Gỉa sử \(16^k-15k-1⋮225\)
- Ta chứng minh \(16^{k+1}-15\left(k+1\right)-1⋮225\)
Thực vậy : \(16^{k+1}-15\left(k+1\right)-1=16.16^k-15k-15-1\)
\(=\left(16^k-15k-1\right)+15.16^k-15\)
Theo giả thuyết qui nạp \(16^k-15k-1⋮225\)
Còn \(15.16^k-15=15\left(16^k-1\right)⋮15.15=225\)
Vậy \(16^n-15n-1⋮225\)
a)9.10^n + 18 (1) CM theo cách quy nạp:
n = 0 => (1) = 9 .1 + 18 = 27 chia hết cho 27
n = 1 => (1) = 9 .10 + 18 = 108 chia hết cho 27
đặt k = n , ta giả sử 9.10^k + 18 chia hết cho 27
bây giờ ta chứng minh 9.10^(k + 1) +18 chia hết cho 27
= 10.9.10^(k) +18 = 9.10^k + 18 + 9.9.10^k = { 9.10^k + 18 } + { 81.10^k }
b) Đặt Un = 16^n-15n-1
- Xét n = 1 , ta có : U1 = 16^1 - 15*1 - 1 =0 chia hết cho 225
- Giả sử Un chia hết cho 225 với n = k nào đó ( k >=1), tức là : Uk = 16^k -15k -1 chia hết cho 225
Giờ ta chỉ cần chứng minh U[k + 1] = 16^(k + 1 ) -15(k + 1) -1 chia hết cho 225 là được
**Thật vậy ta có 16^(k + 1 ) -15(k + 1) -1 = 16*16^k - 15k - 15 - 1 = 16^k -15k -1 + 15*16^k -15=Uk + 15(16^k -1) (1) Ở đây, đã có Uk chia hết cho 225 rồi, ta thấy chỉ cần chứng minh 16^k -1 chia hết cho 15 nữa là được
_________________-
Với việc chứng minh Vk = 16^k - 1 chia hết cho 15
- Xét k = 1 , ta có V1 = 15 chia hết cho 15
- Giả sử Vk chia hết cho 15 với k = h nào đó (h>= 1), tức là Vh = 16^h -1 chia hết cho 15
Giờ ta chỉ cần chứng minh V[h + 1] = 16^(h + 1) - 1 chia hết cho 15 là được
*** Thật vậy tacó 16^(h+1) - 1 = (16^h)*16 - 1 = 16^h - 1 + 15*16^h = Vh + 15*16^h chia hết cho 15 (2)
cả 2 nhóm đều chia hết cho 27 => đpcm