a) \(\left|4-x\right|+2x=3\)
\(\Rightarrow\left|4-x\right|=3-2x\)
Nếu \(4-x\ge0\Rightarrow x\ge-4\) thì:
\(4-x=3-2x\)
\(\Rightarrow4-3=-2x+x\)
\(\Rightarrow-x=1\)
\(\Rightarrow x=-1\) ( t/m )
Nếu \(4-x< 0\Rightarrow x< -4\) thì:
\(-\left(4-x\right)=3-2x\)
\(\Rightarrow-4+x=3-2x\)
\(\Rightarrow-4-3=-2x-x\)
\(\Rightarrow-7=-3x\)
\(\Rightarrow x=\frac{7}{3}\) ( loại )
Vậy \(x=-1\)
b) Vì \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)
nên \(4x\ge0\Rightarrow x\ge0\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=4x\)
\(\Rightarrow x+1+x+2+x+3=4x\)
\(\Rightarrow x=6\)
Vậy \(x=6\)
c) \(\left|2x-1\right|=2\)
\(\Rightarrow2x-1=\pm2\)
+) \(2x-1=2\Rightarrow x=\frac{3}{2}\)
+) \(2x-1=-2\Rightarrow x=\frac{-1}{2}\)
Vậy \(x\in\left\{\frac{3}{2};\frac{-1}{2}\right\}\)
d) \(\left|3-2x\right|+\left|4y+5\right|=0\)
\(\Rightarrow\left|3-2x\right|=0\) và \(\left|4y+5\right|=0\)
+) \(\left|3-2x\right|=0\Rightarrow3-2x=0\Rightarrow x=\frac{3}{2}\)
+) \(\left|4y+5\right|=0\Rightarrow4y+5=0\Rightarrow y=\frac{-5}{4}\)
Vậy \(x=\frac{3}{2};y=\frac{-5}{4}\)
e) \(x^2+\left|x-1\right|=x^2+2\)
\(\Rightarrow\left|x-1\right|=2\)
Đến đây làm tương tự phần c để tìm x