\(A=4+2^2+2^3+...+2^{20}\)
\(\Rightarrow2A=8+2^3+2^4+2^5+...+2^{21}\)
\(\Rightarrow2A-A=\left(8+2^3+2^4+...+2^{21}\right)-\left(4+2^2+2^3+...+2^{20}\right)\)
\(\Rightarrow A=8+2^{21}-4-2^2\)
\(\Rightarrow A=8+2^{21}-8\)
\(\Rightarrow A=2^{21}\)
Vậy \(A=2^{21}\)
2A = 8 + 23 + 24 + 25 + ... + 221
2A - A = (8 + 23 + 24 + 25 + ... + 221) - (4 + 22 + 23 + 24 + ... + 220)
A = 8 + 221 - (4 + 22)
A = 8 + 221 - (4 + 4)
A = 8 + 221 - 8
A = 221