Vì : \(3n+11⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow3\left(n+1\right)⋮n+1\Rightarrow3n+3⋮n+1\)
\(\Rightarrow\left(3n+11\right)-\left(3n+3\right)⋮n+1\)
\(\Rightarrow\left(3n+11-3n-3\right)⋮n+1\)
\(\Rightarrow8⋮n+1\)\(\Rightarrow n+1\inƯ\left(8\right)\)
\(Ư\left(8\right)=\left\{1;2;4;8\right\}\)
+) Nếu : n + 1 = 1 => n = 0
+) Nếu : n + 1 = 2 => n = 1
+) Nếu : n + 1 = 4 => n = 3
+) Nếu : n + 1 = 8 => n = 7
Vậy : \(n\in\left\{0;1;3;7\right\}\)
b, Vì : \(3n+24⋮n-4\)
Mà : \(n-4⋮n-4\Rightarrow3\left(n-4\right)⋮n-4\Rightarrow3n-12⋮n-4\)
\(\Rightarrow\left(3n+24\right)-\left(3n-12\right)⋮n-4\)
\(\Rightarrow\left(3n+24-3n+12\right)⋮n-4\)
\(\Rightarrow36⋮n-4\)\(\Rightarrow n-4\inƯ\left(36\right)\)
\(Ư\left(36\right)=\left\{1;2;3;4;6;9;12;18;36\right\}\)
+) Nếu n - 4 = 1 => n = 5
+) Nếu n - 4 = 2 => n = 6
+) Nếu n - 4 = 3 => n = 7
+) Nếu n - 4 = 4 => n = 8
+) Nếu n - 4 = 6 => n = 10
+) Nếu n - 4 = 9 => n = 13
+) Nếu n - 4 = 12 => n = 16
+) Nếu n - 4 = 18 => n = 22
+) Nếu n - 4 = 36 => n = 40
Vậy : \(n\in\left\{5;6;7;8;10;13;16;22;40\right\}\)
c, Vì : \(3n+5⋮n+1\)
Mà : \(n+1⋮n+1\Rightarrow3\left(n+1\right)⋮n+1\Rightarrow3n+3⋮n+1\)
\(\Rightarrow\left(3n+5\right)-\left(3n+3\right)⋮n+1\)
\(\Rightarrow3n+5-3n-3⋮n+1\)
\(\Rightarrow2⋮n+1\Rightarrow n+1\inƯ\left(2\right)\)
\(Ư\left(2\right)=\left\{1;2\right\}\)
+) Nếu : n + 1 = 1 => n = 0
+) Nếu : n + 1 = 2 => n = 1
Vậy : \(n\in\left\{0;1\right\}\)
a)\(\frac{3n+11}{n+1}=\frac{3\left(n+1\right)+8}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{8}{n+1}=3+\frac{8}{n+1}\in Z\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
...
các phần khác tương tự
a) \(3n+11⋮n+1\)
\(\Rightarrow3n+3+8⋮n+1\)
\(\Rightarrow\left(3n+3\right)+8⋮n+1\)
\(\Rightarrow3\left(n+1\right)+8⋮n+1\)
Mà: \(3\left(n+1\right)+8⋮n+1\) (1)
\(3\left(n+1\right)⋮n+1\) (2)
Từ (1) và (2) \(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
Ta có:
Ư (8) = {1; 2; 4; 8}
\(\Rightarrow n+1\in\left\{1;2;4;8\right\}\)
\(\Rightarrow n\in\left\{0;1;3;7\right\}\)