Giari phương trình
1) \(\sqrt{4x^2-4x+1}=5\)
2) \(\sqrt{4x-12}+\dfrac{1}{3}.\sqrt{9x-27}=4+\sqrt{x-3}\)
3) \(\sqrt{4x+8}-\sqrt{9x+18}-2\sqrt{x+2}=21\)
4)\(\left(3-2\sqrt{x}\right).\left(2+3\sqrt{x}\right)=16-6x\)
5)\(\sqrt{x^2-4}-\sqrt{x-2}=0\)
1)Tính
a) √(2-√5)2 +√(√5+1)2
b) (3+2√2)2 + (1-√2)2
c) (1+√3)3
2) Tìm X
a) √9x2 - 6x+1 =4
b) √x+1 + √4x+4 =9
3) Rút gọn
(3-x)2 - √0,2 * √180a2 với a >0 hoặc = 0
Giải các pt sau: a)\(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) b)\(\sqrt{4x-20}+3\sqrt{\dfrac{x+5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Cho \(M=\frac{5}{9x^2-6x+\frac{9}{4}}\) Tìm GTLN
Rút Gọn
a)\(S=\sqrt{\frac{36a^2b^6c^8}{4}}\) với a < 0; b < 0
b)\(S=\sqrt{\frac{1}{abc}\left(\sqrt{\frac{abc^2}{4}+\sqrt{\frac{ab^5c^3}{9}}}\right)}\) với a > 0 ; b > 0 ; c > 0
b4: phân tích thành nhân tử :
a, \(a-5\sqrt{a}\) với a > 0
b, \(a-7\) với a > 0
c, \(a+4\sqrt{a}+4\)
d, \(\sqrt{xy}-4\sqrt{x}+3\sqrt{y}-12\)
giải pt
a)\(\sqrt{\dfrac{2x-3}{x-1}}=2\)
b)\(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
c)\(\sqrt{4x^2-9}=2\sqrt{2x+3}\)
d)\(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
e)\(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
khai phương các tích sau:
A = \(\sqrt{50a^5b^7}\) với (a, b > 0)
B = \(\sqrt{\dfrac{1}{4}\left(x-1\right)^2x^4}\)
giá trị lớn nhất của y = \(\sqrt{16-x^2}\) bằng số nào sau đây:
A.0 B.4 C.16 D.3
Giải ra giúp mình với
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
2. Tính:
2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.