`@` `\text {Ans}`
`\downarrow`
`9^8 \div 3^2`
`= (3^2)^8 \div 3^2`
`= 3^16 \div 3^2`
`=`\(3^{16-2}=3^{14}\)
_____
`3^7 * 27^5 * 81^3`
`= 3^7*(3^3)^5 * (3^4)^3`
`= 3^7 * 3^15 * 3^12`
`=`\(3^{7+15+12}\)
`= 3^34`
______
`36^5 \div 18^5`
`= (36 \div 18)^5`
`= 2^5 = 32`
______
`24*5^5 + 5^2*5^3`
`= 24*5^5 + 5^5`
`= 5^5*(24+1)`
`= 5^5 * 25`
`= 5^5*5^2`
`= 5^7`
______
`125^4 \div 5^8`
`= (5^3)^4 \div 5^8`
`= 5^12 \div 5^8`
`= 5^4`
_____
`@` Phép nâng lên lũy thừa: \(\left(a^m\right)^n=a^{m\cdot n}\)
`@` Chia lũy thừa cùng cơ số: \(a^m\div a^n=a^{m-n}\)
`@` Nhân lũy thừa cùng cơ số: \(a^m\cdot a^n=a^{m+n}\)
\(9^8:3^2\)
\(=\left(3^2\right)^8:3^2\)
\(=3^{16}:3^2\)
\(=3^{14}\)
=============
\(3^7\cdot27^5\cdot81^3\)
\(=3^7\cdot\left(3^3\right)^5\cdot\left(3^4\right)^3\)
\(=3^7\cdot3^{15}\cdot3^{12}\)
\(=3^{7+12+15}\)
\(=3^{34}\)
===============
\(36^5:18^5\)
\(=\left(36:18\right)^5\)
\(=2^5\)
\(=32\)
=============
\(24\cdot5^5+5^2\cdot5^3\)
\(=24\cdot5^5+5^5\)
\(=5^5\cdot\left(24+1\right)\)
\(=5^5\cdot25\)
\(=5^5\cdot5^2\)
\(=5^7\)
==============
\(125^4:5^8\)
\(=\left(5^3\right)^4:5^8\)
\(=5^{12}:5^8\)
\(=5^4\)