1)\(\left\{{}\begin{matrix}2x+\dfrac{1}{y}=\dfrac{3}{x}\\2y+\dfrac{1}{x}=\dfrac{3}{y}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=3y+8x\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^2+y^2+x-2y=2\\x^2+y^2+2x+2y=11\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^3-y=1\\3x^2-3xy+y^2=1\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3-y^3=9\\\left(x-y\right)\left(x^2+y^2\right)=15\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2\left(1+y^2\right)=2\\1+xy+x^2y^2=3x^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(x+1\right)^2\left(y+1\right)^2=27xy\\\left(x^2+1\right)\left(y^2+1\right)=10xy\end{matrix}\right.\)
1, giải hệ phương trình:\(\left\{{}\begin{matrix}y^3-2x^3+3x^2y-3xy^2=0\\x^2y^2-4x^2y-y^2-8x+8y+4=0\end{matrix}\right.\)
Tìm nghiệm nguyên của các phương trình
a/ 2x^2-xy-6y^2+13y-3x+7=0
b/ 3x^2+10xy+8y^2=21
c/ 2x^2+y^2+2z^2-2xy+2xz=12
d/ x^2+2y^2+3z^2+4t^2+2xy+2xz+2xt+4yz-2zt=10
e/ 3x^2y+5xy-8y-x^2-10x=4
Giair hệ pt:
\(\left\{{}\begin{matrix}x^2y+8x+y=12\\3xy^2+4xy=y^2+6y+4\end{matrix}\right.\)
Giải hệ pt sau:
\(\left\{{}\begin{matrix}x^2y+8x+y=12\\3xy^2+4xy=y^2+6y+4\end{matrix}\right.\)
Em cảm ơn ạ.
Tìm x để y đạt GTLN thỏa mãn \(x^2+2y^2+2xy-8x-4y=0\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)
Giai hệ phương trình: \(\left\{{}\begin{matrix}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{matrix}\right.\)