\(\cos^2\left(\frac{\pi}{2}+2x\right)-\cos^22x-3\cos\left(\frac{\pi}{2}-2x\right)-4=0\)
Chứng minh rằng : \(\cos^2x+\cos^2\left(\frac{\pi}{3}+x\right)+\cos^2\left(\frac{2\pi}{3}+x\right)=\frac{3}{2}\)
a. \(\cos^2\alpha+\cos^2\left(\alpha-\frac{\pi}{3}\right)+^{ }\cos^2\left(\frac{2\pi}{3}-\alpha\right)=\frac{3}{2}\)
\(2\cos\left(x+\frac{\pi}{6}\right)+3\cos\left(x+\frac{\pi}{3}\right)=2\)
\(\cos\left(x+\frac{\pi}{3}\right)+\cos x=\frac{3}{2}-4\sin\left(\frac{x}{2}\right)\cdot\sin\left(\frac{x}{2}+\frac{\pi}{6}\right)\)
chứng minh : \(\frac{2\times\cos\frac{2\pi}{5}\times\sin\frac{\pi}{5}}{\sin\frac{\pi}{10}\times\sin\frac{3\pi}{10}}\) = 2 .
Giải phương trình \(cos^4x+\sin^4x+cos\left(x-\frac{\pi}{4}\right)\times sin\left(3x-\frac{\pi}{4}\right)-\frac{3}{2}=0\)có nghiệm là:
A.\(x=\pm\frac{\pi}{4}+k2\pi\)
B.\(x=\frac{\pi}{2}+k\pi\)
C.\(x=\frac{\pi}{4}+k\pi\)
D.\(x=\frac{\pi}{4}+k2\pi\)
1. sin10x=1
2. tan(\(\frac{x}{3}\)+\(\frac{\pi}{3}\))=\(\frac{\sqrt{3}}{3}\)
3. sin(2x+\(\frac{\pi}{3}\))+sinx=0
4.8cos2x.sin2x.cos4x=\(\sqrt{2}\)
5.cot2x=cot(x+\(\frac{\pi}{2}\))
6. tan(x+\(\frac{\pi}{3}\))+cot2x=0
7. cosx.sin(\(\frac{\pi}{2}\)+6x)+cos(\(\frac{\pi}{2}\)-x).sin6x=1
8. cos(2x+\(\frac{\pi}{3}\))+cos(x-\(\frac{\pi}{3}\))=0
giải các phương trình sau : a) \(\sin4x=\sin\frac{\pi}{5}\) ; b) \(\sin\left(\frac{x+\pi}{5}\right)\)=\(-\frac{1}{2}\) ; c) \(\cos\frac{x}{2}=\cos\sqrt{2}\) ; d) \(\cos\left(x+\frac{\pi}{18}\right)=\frac{2}{5}\)