góc BHA=góc BMA=90 độ
=>BMHA nội tiếp
góc DHM=góc DBA=45 độ
=>HM là phân giác của góc BHD
góc BHA=góc BMA=90 độ
=>BMHA nội tiếp
góc DHM=góc DBA=45 độ
=>HM là phân giác của góc BHD
Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Trên đoạn MC lấy điểm D, kẻ BH ⊥ AD (H ∈ AD). Chứng minh rằng HM là tia phân giác góc BHD.
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
cho tam giác ABC vuông cân đáy BC . MN là trung điểm của AB,AC.kẻ NH vuông góc CM.HE vuông góc AB
a) kẻ AK vuông góc MC, AQ vuông góc HN. Chứng minh góc BKA bằng góc AHC
b)Chứng minh tam giác ABH cân
c) Chứng minh HM là phân giác của góc BHE
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A. Đường phân giác của góc B cắt AC tại .Từ D kẻ DE vuông góc với BC. Đường thẳng ED cắt BA tại F
a, Chứng minh tam giác ADF= tam giác EDC
b,chứng minh AD<DC
c,chứng minh tam giác BCF cân
d, gọi H là hình chiếu của A trên BC.biết HB= 9cm và HC =4cm tính AH
giúp mk vs cản ơn trước
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
ho tam giác abc vuông tại a, có góc acb = 30 độ, đường vuông góc kẻ từ a cắt bc tại h. trên đoạn hc lấy điểm d sao cho hd=hb câu a/ chứng minh tam giác ahb=tam giác ahd câu b/ chứng minh tam giác abd là tam giác đều câu c/ từ c kẻ ce vuông góc với ad, (e thuộc ad). chứng minh de=hb câu d/ kẻ df vuông góc với ac, (f thuộc ac); gọi i là giao điểm của ce và ah. chứng minh: i, d, f thẳng hàng.
cho Δ ABC cân tại A (góc A nhọn, AB>BC). gọi H là trung điểm của BC.
a) cm Δ AHB= Δ AHC và AH vuông góc với BC tại H
b) gọi M là trung điểm của AB. qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. giả sử AB=20cm, AD=12cm. cm AD=BH. tính độ dài đoạn AH
c) tia phân giác của góc BAD cắt tia CB tại N. kẻ NK vuông góc với AD tại K, NQ vuông góc với AB tại Q.cm AQ=AK và góc ANQ=45 độ +1/4BAC
d) CD cắt AB tại S.cm BC<3AS
Ai giúp em câu c và d vs ạ :(((