\(5^{\left(x-2\right)\left(x+3\right)}=1^x\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Leftrightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0+2\\x=0-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
Ta có: \(1^x=1\forall x\in R\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=1\forall x\in R\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy x = 2 hoặc x = -3
Ta có :
\(5^{\left(x-2\right)\left(x+3\right)}=1^x\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\) \(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0+2\\x=0-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\) Vậy \(x\in\left\{2;-3\right\}\)
Ta có:1x=1,thay 1 vào 1x:
5(x-2)(x+3)=1
Mà 50=1,thay 50vào 1:
5(x-2)(x+3)=50
\(\Rightarrow\)(x-2)(x+3)=0
(x-2) hoặc (x+3)=0
+nếu x-2=0
\(\Rightarrow\)x=0+2=2
+nếu x+3=0
\(\Rightarrow\)x=0-3=-3
Vậy x={2;-3}
\(5^{\left(x-2\right)\left(x+3\right)}=1^x\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Leftrightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x-2=0\) hoặc \(x+3=0\)
\(\Rightarrow x=2\) \(\Rightarrow x=-3\)
Vậy \(x=2\) hoặc \(x=-3\)