Ta có:\(5^{x-1}\ge5^{x^2-x-9}\)
\(\Leftrightarrow x-1\ge x^2-x-9\)
\(\Leftrightarrow x^2-2x-8\le0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4\le0\\x+2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4\ge0\\x+2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le4\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge4\\x\le-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-2\le x\le4\)