Cho tam giác ABC (AB<AC), vẽ đường cao AH
a) Chứng minh: góc BAH < góc CAH và BH<CH
b) Trên tia đối của HA lấy điểm E sao cho HE=HA. C/m △ABE cân
c) Gọi M là trung điểm của BC, trên tia đối của MA lấy điểm D sao cho MD=Ma. C/m △AED vuông
cho tam giác ABC có cạnh AB = BC, M là trung điểm của BC
a, chứng minh tam giác ABM = tam giác ACM
b, trên tia đối của tia MA lấy điểm D sao cho MD =MA chứng minh AC = BD
c, chứng minh AB // CD d, trên nửa mật phẳng là bờ AC khống chữa điểm B, vẽ tia Ax // BC lấy điểm I thuộc Ax sao cho AI = BC chứng minh 3 điểm D,C,I thẳng hàng
Cho tam giác ABC vuông tại A có AB = BC Gọi H là trung điểm của BC chứng minh tam giác ahb bằng tam giác ACh chứng minh góc bah= góc ach trên tia đối của tia ah lấy điểm e sao cho ae = bc trên tia đối của tia ca lấy điểm f sao cho cf = ab chứng minh be = bf và be vuông góc với bf
Cho tam giác ABC vuông tại A có am là đường trung tuyến trên tia đối của MA lấy điểm D sao cho MD = MA
a, chứng minh tam giác ACD vuông
b ,Gọi K là trung điểm của AC Chứng minh KB bằng KD
c , KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
cho tam giác ABC nhọn có AB=AC. Gọi H là trung điểm BC
a)Chứng minh tam giác AHB = tam giác AHC
b) trên tia đối của tia HA lấy điểm M sao cho HM = HA Chứng minh tam giác AHB = tam giác MHC và MC song song AB Chứng minh tam giác ACM cân
c)Trên tia đối của tia CM, lấy điểm N sao cho C là trung điểm của MN. Gọi O là giao điểm của AC và HN, OM cắt AN tại K. Chứng minh: 20k=OM
Cho tam giác ABC vuông tại A có AB=16cm, AC=12cm. a) tính BC. b) vẽ AH vuông góc với BC tại H, trên HB lấy E sao cho HE=HC. chứng minh AC=AE. c) Trên tia đối tia HA lấy D sao cho DH=AH. chứng minh ED vuông góc AB. d) chứng minh CH<AH
Bài 5. Cho tam giác ABC vuông tại A (AB> AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a. Cho AB= 8cm, BC= 10cm. Tính AC?
b. Chứng minh ΔAMB = ΔDMC, từ đó suy ra CD ⊥ AC
c. Vẽ AH vuông góc với BC tại H, trên tia đối của HA lấy E sao cho HE = HA. Chứng minh: ΔACE cân
d) Chứng minh BD = CE.