`4/9x^2-25/16=0`
`4/9 x^2 = 0 + 25/16`
`4/9 x^2 = 25/16`
`x^2 = 25/16 : 4/9`
`x^2 = 25/16 xx 9/4`
`x^2 = 225/64`
`=>` \(x=\sqrt{\dfrac{225}{64}}\)
`=>` \(x=\left(\pm\dfrac{15}{8}\right)\)
Vậy `S = {15/8 ; -15/8}`
`4/9x^2-25/16=0`
`<=> 4/9 x^2 = 25/16`
`<=>x^2 = 25 /16 * 9/4 `
`<=> x^2 = 225/64`
`=>x = sqrt{225/64} = sqrt{(15/8)^2}`
`x = |15/8|`
`=> x = 15/8 (hoặc) x = -15/8`
Vậy `x∈{15/8 ; -15/8}`