4) \(\left(\dfrac{3}{7}\right)^2\cdot\left(-7\right)^4\)
\(=\left(\dfrac{3}{7}\right)^2\cdot\left[\left(-7\right)^2\right]^2\)
\(=\left(\dfrac{3}{7}\right)^2\cdot49^2\)
\(=\left(\dfrac{3}{7}\cdot49\right)^2\)
\(=\left(\dfrac{147}{7}\right)^2\)
\(=21^2\)
\(=441\)
5) \(\left(-11\right)^{12}\cdot\left(\dfrac{4}{11}\right)^6\)
\(=\left[\left(-11\right)^2\right]^6\cdot\left(\dfrac{4}{11}\right)^6\)
\(=121^6\cdot\left(\dfrac{4}{11}\right)^6\)
\(=\left(121\cdot\dfrac{4}{11}\right)^6\)
\(=44^6\)
6) \(6^8\cdot\left(\dfrac{5}{7}\right)^7\)
\(=6^8\cdot\dfrac{5^7}{6^7}\)
\(=\dfrac{6^8\cdot5^7}{6^7}\)
\(=6\cdot5^7\)
\(=469750\)
\(\left(\dfrac{3}{7}\right)^2\cdot\left(-7\right)^4=\dfrac{9}{49}\cdot49^2=9\cdot49=441\)
\(\left(-11\right)^{12}\cdot\left(\dfrac{4}{11}\right)^4=11^{12}\cdot\dfrac{4^4}{11^4}=11^8\cdot4^4=54875873536\)
\(\left(-6\right)^8\cdot\left(\dfrac{5}{6}\right)^7=6^8\cdot\dfrac{5^7}{6^7}=6\cdot5^7=469750\)