1. Cho tam giác ABC vuông tại A, AB=15cm, AC=20cm.
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì? Tính chu vi và diện tích của tứ giác AMEN.
d) Chứng minh: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AE}\)
Cho tam ABC có góc A bằng 90 độ và đường cao AH ( H thuộc BC) kẻ HE và HF lần lượt vuông góc với AB và AC tại E,F
1, chứng minh AEHF là hcn và tính EF , CF
2, tính diện tích tứ giác AEHF
3, tính diện tích tứ giác BEFC
cho tam giác ABC vuông tại A, cso AB=6cm, AC=8cm
a) Tính BC, góc B, góc C
b) Phân giác của góc A cắt BC tại D. Tính BD,DC và diện tích tam giác ABD
Cho tam giác ABC vuông tại A đường cao AH, AB=6, BC=10 a) Tính BH, HC, AH, góc BAH. b) Vẽ BD là tia phân giác của tam giác ABH ( D thuộc AC ). Kẻ AK vuông góc với BD tại K. Cmr: BH.BC=BK.BD. c) BD cắt AH tại S. Tính diện tích tứ giác SHCD?
Bài 1: Cho tám giác ABC vuông ở A có AB = 12cm, AC = 16cm.
a) Tính độ dài trung tuyến AM.
b) Kẻ đường cao AH. Tính chu vi tam giác ABH.
c) Tia phân giác của góc AMB và góc AMC cắt AB, AC lần lượt ở D và E. Chứng minh: tam giác ABC và ADE đồng dạng.
d)Tính: SBDEC và SDME.
Bài 1: Cho tam giác ABC vuông ở A có AB = 12cm, AC = 16cm.
a) Tính độ dài trung tuyến AM.
b) Kẻ đường cao AH. Tính chu vi tam giác ABH.
c) Tia phân giác của góc AMB và góc AMC cắt AB, AC lần lượt ở D và E. Chứng minh: tam giác ABC và ADE đồng dạng.
d)Tính: Sbdec và Sdme.
Bài 3 . Cho tam giác ABC vuông tại A có AB=5cm ;BC=13cm .
a) Tính tỉ số lượng giác của góc ACB .
b) Vẽ hai phân giác BE, CF cắt nhau tại I. Tính AE,EC , AF,BF và số đo góc BIC .
c) Kẻ IH vuông góc AB ;IK vuông góc AC . Chứng tỏ rằng AHIK là hình vuông.
Bài 3 . Cho tam giác ABC vuông tại A có AB=5cm ;BC=13cm .
a) Tính tỉ số lượng giác của góc ACB .
b) Vẽ hai phân giác BE, CF cắt nhau tại I. Tính AE,EC , AF,BF và số đo góc BIC .
c) Kẻ IH vuông góc AB ;IK vuông góc AC . Chứng tỏ rằng AHIK là hình vuông.
Cho \(\Delta ABC\) vuông tạ A có AB = 6 cm và BC = 12 cm
a. Tính độ dài cạnh AC và số đo các góc B, C
b. tia phân giác của góc B cắt cạnh AC tại D, giải tam giác vuông ABD
c. Từ D kẻ DE vuông góc BC (E thuộc BC). Không dùng số đo, chứng minh rằng \(\dfrac{S_{EDC}}{S_{ABC}}=tan^2\dfrac{B}{2}\)