Nếu sai đề:
`(3-a)^2-\sqrt(0,2 . \sqrt(180^4))`
`=(3-a)^2 . \sqrt(1/5 . 180^2)`
`=(3-a)^2 . \sqrt6480`
`=(3-a)^2 . 36\sqrt5`
`(3-a)^2 -\sqrt(0,2) . \sqrt(180^4)`
`=(3-a)^2 - \sqrt(1/5) . 180^2`
`=(3-a)^2 - \sqrt5/5 . 180^2`
`=(3-a)^2 - 6480. \sqrt5`
Nếu sai đề:
`(3-a)^2-\sqrt(0,2 . \sqrt(180^4))`
`=(3-a)^2 . \sqrt(1/5 . 180^2)`
`=(3-a)^2 . \sqrt6480`
`=(3-a)^2 . 36\sqrt5`
`(3-a)^2 -\sqrt(0,2) . \sqrt(180^4)`
`=(3-a)^2 - \sqrt(1/5) . 180^2`
`=(3-a)^2 - \sqrt5/5 . 180^2`
`=(3-a)^2 - 6480. \sqrt5`
1)Tính
a) √(2-√5)2 +√(√5+1)2
b) (3+2√2)2 + (1-√2)2
c) (1+√3)3
2) Tìm X
a) √9x2 - 6x+1 =4
b) √x+1 + √4x+4 =9
3) Rút gọn
(3-x)2 - √0,2 * √180a2 với a >0 hoặc = 0
Rút gọn các biểu thức sau:
a. \(\sqrt{\dfrac{2a}{3}}.\sqrt{\dfrac{3a}{8}}\) với \(a\ge0;\)
b. \(\sqrt{13a}.\sqrt{\dfrac{52}{a}}\) với a > 0;
c. \(\sqrt{5a}.\sqrt{45a}-3a\) với \(a\ge0;\)
d. \(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}.\)
1) \(\sqrt{3a^3}\) . \(\sqrt{12}\)
2) \(\sqrt{12,1.360}\)
3) \(\sqrt{5a}\) . \(\sqrt{45a}\) - 3a (a ≤ 0)
4) (3 - a)2 _ \(\sqrt{0,2}\) .\(\sqrt{180a^2}\) (a bé hơn 0 )
5) \(\sqrt{0,36a^2}\) (a bé hơn 0)
6) \(\sqrt{a^4.\left(3-a^2\right)}\) (a lớn hơn 3)
7)\(\sqrt{27.48.\left(1-a\right)^2}\) (a lớn hơn 1)
8) \(\dfrac{1}{a-6}\) . \(\sqrt{a^4\left(a-b\right)^2}\) (a lớn hơn b)
BT: Tính
a, \(\sqrt{13}.\sqrt{52}\)
b, \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}\)
c, \(\sqrt{12}-\sqrt{27}+\sqrt{3}\)
d, \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
e, \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}\)
f, \(\sqrt{3}.\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right)\)
g, \(\left(\sqrt{18}+\sqrt{32}-\sqrt{50}\right).\sqrt{2}\)
h, \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
k, \(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)
l, \(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}\)
m, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
n, \(\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}\)
p, \(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)
q, \(2\sqrt{3}\left(\sqrt{2}-3\right)+\left(2-\sqrt{3}\right)^2+6\sqrt{3}\)
Rút gọn biểu thức: (3−a)2−√0,2.√180a2
1: (a-3)√b^2/a^2-6*a+9 (a>3)
2: 1/3+a* √a^2+6a+9/b^2
3:√(a+1)^2 - 3a/a-2 * √a^2-4a+4/9 (a>2)
4: (3-√3)*(-2√3)+(3√3+1)^2
5: (2√3-3√2)^2 + √(12√6-5)^2
6: (4+√15)*(√10-√6)*√4-√15
7: √3-√5 * (√10 -√2)*(3+√5)
Mọi người giúp mk với
Tính :
a) A= \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}\)
b) B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
c) C= \(3-\sqrt{3-\sqrt{5}}\)
cho a b c là các số thực dương thỏa mãn a^2+b^2-c^2=ab CM a^3+^3+3abc<=5c^3
Cho a , b > 0 và \(a^2+b^2=9\)
Cmr : \(\dfrac{ab}{a+b+3}\le\dfrac{3\sqrt{2}-3}{2}\)