ĐKXĐ: \(x\ge-\frac{1}{2}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\) \(\Rightarrow9=2a^2-b^2\)
\(ab=\sqrt{\left(x+5\right)\left(2x+1\right)}=\sqrt{2x^2+11x+5}\)
Phương trình trở thành:
\(2a+2a^2-b^2=2b+ab\)
\(\Leftrightarrow2a^2+\left(2-b\right)a-b^2-2b=0\)
\(\Delta=\left(2-b\right)^2-8\left(-b^2-2a\right)=9b^2+12b+4=\left(3b+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}a=\frac{b-2+3b+2}{4}=b\\a=\frac{b-2-3b-2}{4}=\frac{-b-2}{2}< 0\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x+5}=\sqrt{2x+1}\Rightarrow x+5=2x+1\Rightarrow x=4\)