Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
Giải phương trình:
1. \(x\sqrt{x}+\dfrac{32}{x\sqrt{x}}=6\sqrt[3]{3x-4}\)
2. \(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
3. \(\sqrt{8-x^2}+\sqrt{\dfrac{x^2-2}{2x^2}}=5-\dfrac{1+x^2}{x}\)
4. \(x^4-12x^3+38x^2-12x-67+\sqrt{x+1}+\sqrt{7-x}=0\)
Cmr: \(\dfrac{9x^2+7x+1}{6x+3}< 0,\forall x\le\dfrac{1-\sqrt{5}}{2},x\ge\dfrac{1+\sqrt{5}}{2}\)
Giai pt
1,\(\sqrt{x+8-6\sqrt{x-1}}\)=4
2,\(\sqrt{x+6-2\sqrt{x+2}}\)+\(\sqrt{x+11-6\sqrt{x+2}}\)=1
3,\(\sqrt{x-3-2\sqrt{x-4}}\)+\(\sqrt{x-4\sqrt{x-4}}\)=1
4,\(\sqrt{x-2+\sqrt{2x+5}}\)+\(\sqrt{x+2+3\sqrt{2x-5}}\)=\(\dfrac{7}{2}\)
5,\(\sqrt{2x+4+6\sqrt{2x-5}}\)+\(\sqrt{2x-4-2\sqrt{2x-5}}\)=4
6,\(\sqrt{\dfrac{1}{4}x^2+x+1}\)-\(\sqrt{6-2\sqrt{5}}\)=0
7,x+\(\sqrt{x+\dfrac{1}{2}}\)+\(\sqrt{x+\dfrac{1}{4}}\)=2
8,\(\sqrt{\left(x-1\right)+4-4\sqrt{x-1}}+\sqrt{x-1-6\sqrt{x-1+9}}\)=1
9,\(\sqrt{x+2\sqrt{x-1}}\)+\(\sqrt{x-2\sqrt{x-1}}\)=\(\dfrac{x+3}{2}\)
Giải phương trình sau
\(\dfrac{2x+1}{x-1}+\sqrt{\dfrac{2x+1}{x-1}}-3=0\)
giải các phương trình sau
a)\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
b)\(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)
c)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
d)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)
Cho: a, b, c > 0; a + b + c = abc.
Tìm max của: A = \(\dfrac{1}{\sqrt{1+c^2}}\) + \(\dfrac{1}{\sqrt{a^2+1}}\) + \(\dfrac{1}{\sqrt{b^2+1}}\)
tính A biết A=(\(\dfrac{\sqrt[4]{2010^2}-\sqrt[4]{2010}}{1-\sqrt[4]{2010}}+\dfrac{1+\sqrt{2010}}{\sqrt[4]{2010}}\)) -\(\dfrac{\sqrt{1+\dfrac{2}{2010}+\dfrac{1}{2010}}}{1+\sqrt{2010}}\)
tìm điều kiện xác định
A=(\(\dfrac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}\)\(+\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)).\(\dfrac{x-1}{2x+\sqrt{x}-1}\)