đkxđ:\(\left\{{}\begin{matrix}x\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\2x+\sqrt{x}-1\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ge0\\x\ne\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow x\ge1\)
đkxđ:\(\left\{{}\begin{matrix}x\sqrt{x}-1\ne0\\\sqrt{x}\ge0\\2x+\sqrt{x}-1\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ge0\\x\ne\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow x\ge1\)
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp
giải các phương trình sau
a)\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
b)\(\sqrt{3-x+x^2}-\sqrt{2+x-x^2}=1\)
c)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
d)\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}=2x+\dfrac{1}{2x}+4\)
Giai pt
1,\(\sqrt{x+8-6\sqrt{x-1}}\)=4
2,\(\sqrt{x+6-2\sqrt{x+2}}\)+\(\sqrt{x+11-6\sqrt{x+2}}\)=1
3,\(\sqrt{x-3-2\sqrt{x-4}}\)+\(\sqrt{x-4\sqrt{x-4}}\)=1
4,\(\sqrt{x-2+\sqrt{2x+5}}\)+\(\sqrt{x+2+3\sqrt{2x-5}}\)=\(\dfrac{7}{2}\)
5,\(\sqrt{2x+4+6\sqrt{2x-5}}\)+\(\sqrt{2x-4-2\sqrt{2x-5}}\)=4
6,\(\sqrt{\dfrac{1}{4}x^2+x+1}\)-\(\sqrt{6-2\sqrt{5}}\)=0
7,x+\(\sqrt{x+\dfrac{1}{2}}\)+\(\sqrt{x+\dfrac{1}{4}}\)=2
8,\(\sqrt{\left(x-1\right)+4-4\sqrt{x-1}}+\sqrt{x-1-6\sqrt{x-1+9}}\)=1
9,\(\sqrt{x+2\sqrt{x-1}}\)+\(\sqrt{x-2\sqrt{x-1}}\)=\(\dfrac{x+3}{2}\)
\(2x+\dfrac{x-1}{x}=\sqrt{1-\dfrac{1}{x}}+3\sqrt{x-\dfrac{1}{x}}\)
Giải phương trình:
1. \(x\sqrt{x}+\dfrac{32}{x\sqrt{x}}=6\sqrt[3]{3x-4}\)
2. \(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
3. \(\sqrt{8-x^2}+\sqrt{\dfrac{x^2-2}{2x^2}}=5-\dfrac{1+x^2}{x}\)
4. \(x^4-12x^3+38x^2-12x-67+\sqrt{x+1}+\sqrt{7-x}=0\)
Cho biểu thức M=[\(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)- \(\left(\sqrt{X}+2\right)\)]\(\dfrac{\left(\sqrt{x}-1\right)^2}{2}\) Tìm điều kiện của x để M có nghĩa và rút gọn M Chứng minh M <=\(\dfrac{1}{4}\)
Giải các phương trình
a) \(\sqrt{x^2-2x+5}=x^2-2x-1\)
b) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
tìm gtln gtnn của A=\(\dfrac{1}{\sqrt{x}-1}\) và B=\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
Giải phương trình sau
\(\dfrac{2x+1}{x-1}+\sqrt{\dfrac{2x+1}{x-1}}-3=0\)