Sửa đề:
\(\dfrac{2}{3.5}+\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{13}{19.32}+\dfrac{25}{32.57}+\dfrac{30}{57.87}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{32}+\dfrac{1}{32}-\dfrac{1}{57}+\dfrac{1}{57}-\dfrac{1}{87}\)
(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)
\(=\dfrac{1}{3}-\dfrac{1}{87}=\dfrac{28}{87}\)
Chúc bạn học tốt!!!