a , ( 15 - x ) + ( x - 12 ) = 7 - ( - 5 + x )
b , x - { 57 - [ 42 + ( - 23 - x ) ] } = 13 - { 47 + [ 25 - ( 32 - x ) ] }
c , ( x - 3 ) + ( x - 2 ) + ( x - 1 ) + ... + 10 + 11 = 11
d , x + ( x + 1 ) + ( x + 2 ) + ... + 2003 = 2003
e , ( x² + 3x + 9 ) chia hết ( x + 3 )
g , ( 2x² - 10x + 5 ) chia hết ( x - 5 )
a: \(\left(15-x\right)+\left(x-12\right)=7-\left(x-5\right)\)
=>7-x+5=15-x+x-12
=>12-x=3
hay x=9
b: \(\Leftrightarrow x-\left\{57-\left[42-23-x\right]\right\}=13-\left\{47+25-32+x\right\}\)
\(\Leftrightarrow x-\left\{57-19+x\right\}=13-\left\{40+x\right\}\)
=>x-38-x=13-40-x
=>-27-x=-38
=>x+27=38
hay x=11
e: \(x^2+3x+9⋮x+3\)
\(\Leftrightarrow x\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;9;-9;3;-3\right\}\)
hay \(x\in\left\{-2;-4;6;-12;0;-6\right\}\)