\(2017-\left\{-x\left[-x\left(-x\right)\right]\right\}=2019\)
\(\Leftrightarrow2017-\left[\left(-x\right)\cdot x^2\right]=2019\)
\(\Leftrightarrow2017-\left(-x^3\right)=2019\)
\(\Leftrightarrow2017+x^3=2019\)
\(\Leftrightarrow x^3=2\)
\(\Leftrightarrow x=\sqrt[3]{2}\)
2017- {-x-[-x(-x)]}= 2019
2017+x-x+x= 2019
2017+x= 2019
x= 2019-2017=2
vậy x=2
Ta có: \(2017-\left\{-x\cdot\left[-x\cdot\left(-x\right)\right]\right\}=2019\)
\(\Leftrightarrow2017-\left[-x\cdot x^2\right]=2019\)
\(\Leftrightarrow2017+x^3=2019\)
\(\Leftrightarrow x^3=2\)
hay \(x=\sqrt[3]{2}\)
Vậy: \(x=\sqrt[3]{2}\)