Đặt \(A=1+2+2^2+...+2^{2008}\)
\(2A=2+2^2+2^3+...+2^{2009}\)
\(2A-A=2+2^2+2^3+...+2^{2009}-\left(1+2+2^2+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
mà \(B=\dfrac{A}{1-2^{2009}}=-1\)
Giả sử ta Đặt A= \(1+2+2^2+2^3+...+2^{2008}\)
Ta có 2A = \(2+2^2+2^3+...+2^{2009}\)
Lấy 2A - A = \(2+2^2+2^3+...+2^{2009}-\left(1+2+2^2+...+2^{2008}\right)\)
\(\Leftrightarrow A=2^{2009}-1\)
Ta lại có \(B=\dfrac{A}{1-2^{2009}}\)
Thay A vào B ta có \(B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)