\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)(*)
Với n=1, ta có (*) luôn đúng
Giả sử (*) đúng với n=k ta có:
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
Ta sẽ chứng minh (*) đúng với n=k+1, thật vậy từ (1) suy ra:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left[\frac{k\left(2k+1\right)}{6}+\left(k+1\right)\right]\)\(=\frac{\left(k+1\right)\left(2k^2+k+6k+6\right)}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}\)
\(=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*
Vậy ta có điều phải chứng minh