a5 - a = a.(a4 - 1) = a.(a2 - 1).(a2 + 1) = a.(a - 1).(a + 1).(a2 + 1) (*)
Dễ thấy a.(a - 1).(a + 1) chia hết cho 2 và 3 vì là tích 3 số nguyên liên tiếp
=> a5 - a chia hết cho 2 và 3
Mà (2;3)=1 => a5 - a chia hết cho 6 (1)
Ta đã biết số chính phương a2 khi chia cho 5 chỉ có thể dư 0; 1 hoặc 4
+ Nếu a2 chia 5 dư 0, do 5 nguyên tố nên a chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 1 => a2 - 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
+ Nếu a2 chia 5 dư 4 => a2 + 1 chia hết cho 5
Từ (*) => a5 - a chia hết cho 5
Như vậy, a5 - a luôn chia hết cho 5 với mọi a ϵ Z (2)
Từ (1) và (2), do (5;6)=1 => a5 - a chia hết cho 30 (')
=> a5 - a có tận cùng là 0 hay a5 và a có chữ số tận cùng giống nhau (")
(') và (") chính là đpcm