1 . Cho TG ( tam giác) ABC vuông tại A, đg phân giác BD. Kẻ DE vuông góc BC . Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Cm
a. TG ABD = EBD
b. BD là đg trung trực của đoạn thẳng AE
c. AD < DC
d. Góc ADF = góc EDC và E, D, F thẳng hàng
2. Cho TG ABD vuông tại A. các tia phân giác của góc B và C cắt nhau tại I. Kẻ IH vuông góc với BC. Bt HI =1 cm, HB =2 cm, HC =3 cm. Tính chu vi TG ABC
cho tam giác ABC có A=90 độ ,AB=3cm,AC=4cm
a,tính BC
b,so sánh góc B,C
c,kẻ tia phân giác góc C cắt AB tại I
từ I kẻ IH vuông góc với BC (H thuộc BC),AC cắt IH tại tại K chứng minh AK=BH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác ABC vuông tại A ( AB < AC ) . Kẻ AH vuông BC tại H,kẻ HM vuông AB tại M. Trên tia HM lấy E sao cho M là trung điểm của EH .
a, CM AE = AH .
b, Vẽ ta phân giác AI của góc HAC. Lấy K thuộc AC soa cho AK = AH . Cm IK // AB
c,so sánh Hi và IC
d, Kẻ HF vuông tại F, HF cắt AI tại P . CM KP vuông AH
Cho tam giác abc vuông tại a có ab = 3 cm, bc = 5 cm. Lấy điểm D trên cạnh bc sao cho bd=ba. Kẻ đường thẳng vuông góc với bc tại D cắt ac tại E
a) tính độ dài đoạn thẳng ac
b) Chứng minh BE là tia phân giác của abc
c) so sánh ae và ec
d) chứng minh be là đường trung trực của ad
Vẽ hình và giải giúp mình nha
cảm ơn
Cho TG ABC vuông tại A., tia phân giác của góc B cắt AC tại D
A. Cho bt BC 10 cm, AB 6cm, AD 3 cm. Tính độ dài đoạn thẳng AC, cd
B. Về de vuông góc vs BC tại e. Cm TG ABD = TG EBD và TG Bae cân
C. Gọi F là giao điểm của 2 đg thẳng AB và de. So sánh de và df
Mik đg cần gấp
Bài 1: Cho tg ABC cân tại A, vẽ phía ngoài các tg đều ABE, ACD.
a. cm: tg BCD= tg CBE
b. Kẻ đg cao AH của tg ABC. cm: EC, BD, AH cùng đi qua 1 điểm
c. cm: ED // BC
Bài 2: Cho tg cân ABC (AB=AC), trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE
a. cm: Tg ADE là tg cân
b. Gọi M là trung điểm BC. cm: AM là phân giác của góc DAE
c. Từ B và C, kẻ BH vg góc với AD và vg góc với AE. cm: BH = CK
d. cm: HK // DE
e. cm: 3 đg thẳng AM, BH và gặp nhau tại 1 điểm
Bài 3: Cho tg ABC, các trung tuyến BE và CD. Trên tia đối tia EB, lấy I sao cho EI = EB. Trên tia đối tia D, lấy K sao cho DC = DK
a. cm: A là trung điểm của KI
b. Cho BK và CI cắt nhau tại F. cm: BI, CK, FA đồng quy tại G
c. Cho FA và BC cắt nhau tại P. cm: GP = 1/4 GF
Bài 6. Cho tam giác ABC vuông tại A a) Nếu AB = 9cm; BC = 15 cm. Tính AC và so sánh các góc của tam giác ABC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD , Qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh tam giác ABC- tam giác DEC và tam giác BEF cân. c) So sánh BF và AD d) Tìm điều kiện của tam giác ABC để tam giác EFB đều
Cho tg ABC, đường trung trực d của đoạn BC tại I, d cắt AC tại K> từ K kẻ KH vuông góc với AB tại H, trên tia đối của tia HK lấy M sao cho HM=HK
a, cm tg AMB=tg AKB
b, cm BM=KC
c, góc AMB bằng 2 lần góc ACB