a) Xét tg ABC vg tại A
Ta có: BC = √AB2 + AC2 = √ 82 + 62 = 10 cm (Pytago)
Áp dụng tỉ số lượng giác trong tg vg
Ta có: AH = AB.AC / BC = 8 . 6 / 10 = 4,8 cm
Ta có sinC = AB / BC = 8 / 10
=> C = 53o7'
a) Xét tg ABC vg tại A
Ta có: BC = √AB2 + AC2 = √ 82 + 62 = 10 cm (Pytago)
Áp dụng tỉ số lượng giác trong tg vg
Ta có: AH = AB.AC / BC = 8 . 6 / 10 = 4,8 cm
Ta có sinC = AB / BC = 8 / 10
=> C = 53o7'
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
bài 1. Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm và AH là đường cao
a/ Tính HB,HC
b/ Gọi E,F lần lượt là hình chiếu của H trên AC, AB, CMR: AF XAB=AE X AC; AH mủ 3= BF x CE x BC
c/ tính EF
d/ Gọi AD là phân giác góc BAC, D thuộc BC. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại B, có AB=15cm, AC= 25cm, kẻ đường cao BH
a/ Tính AH, HC, BC
b/ Gọi E,F lần lượt là hình chiếu của H trên AB, BC. tứ giác BEHF là hình gì? vì sao
c/ Gọi O là giao điểm BH và EF. CMR HA X HC= 4BO bình phương và BE X BA= BF X BC
d/ CMR BEF=BCAe/ gọi M là trung điểm AC. CMR: BM vuông góc EF
giúp mình nha các bạn, làm đầy đủ giúp mình ạ mình cảm ơn mình cần gấp lắm ạ
cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC. C/m
a) \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)
b) BC.BE.CF = AH3
Cho tam giác ABC vuông tại A đường cao AH. Biết AH = 6, BH = 4,5. a) Tính HC, AC. b) Tính các tỉ số lượng giác của góc C. c) Cho E, F là hình chiếu của H trên AB, AC.
chứng minh AB mũ 3 / AC mũ 3 =BE/CF
Cho tam giác ABC vuông tại A đường cao AH. Biết AH = 6, BH = 4,5. a) Tính HC, AC. b) Tính các tỉ số lượng giác của góc C. c) Cho E, F là hình chiếu của H trên AB, AC.
chứng minh AB mũ 3 / AC mũ 3 =BE/CF
1) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 6cm, BC= 10cm
a)Tính BH, AH,\(\dfrac{AD}{AE}\)
b)CM: DE= BC. sinB.cosB
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)
Cho tam giác ABC vuông tại A có AH là dường cao. Gọi I,K lần lượt là hình chiếu của H lên AB và AC. Biết BC= 10 cm; AH = 4 cm
CMR a AH=IK
b AB.AI= AK. AC
Cho tam giác ABC vuông tại A. Đường cao AH. Biết AC=12 cm, BC=15cm.
a) Tính HA, HB, HC.
b) Gọi E, F lần lượt là hình chiếu của góc H lên AB, AC. Chứng minh: AE.AB=AF.AC
c) Chứng minh: HE2+HF2=HB.HC.