a) \(C=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
Nếu x\(\ge8\) thì C=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
Nếu \(4\le x< 8\) thì \(C=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
b) Ta có \(x=\sqrt{15+\sqrt{6}}\approx4,18\)
\(\Rightarrow4\le x< 8\Rightarrow C=4\)
Vậy khi x=\(\sqrt{15+\sqrt{6}}\) thì C=4