Cho x,y,z là các số thực dương thoả mãn x2-y2+z2=xy+3yz+zx
Tìm Max P=\(\dfrac{x}{(2y+z)^{2}}+\dfrac{1}{xy(y+2z)}\)
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
Cho x,y e R t/m x2+y2=1.
Tìm max \(P=\dfrac{2\left(x^2+6xy\right)}{1+2xy+2y^2}\)
giải pt nghiệm nguyên sau: 1, x2+y2-8x+3y=-18
2, x+y+xy =x^2+y^2
3, x2+(x+y)^2= (x+9)^2
4, \(x^4y-x^4+2x^3-2x^2+2x-y=1\)
giải pt nghiệm nguyên dương
x2+x+1 =y2
Chị @Akai Haruma chị giúp e bài này đc k ạ
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
giải hệ pt:
(1) \(\left\{{}\begin{matrix}x^2-3xy+2y^2=0\\3x+y=6\end{matrix}\right.\)
(2)\(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
(3)\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\x+y-3\sqrt{x+1}=-5\end{matrix}\right.\)
Cho x,y,z là 3 số thực dương thỏa mãn: x2 + y2 + z2 = 2020
Chứng minh: \(\dfrac{2020}{x^2+y^2}+\dfrac{2020}{y^2+z^2}+\dfrac{2020}{z^2+x^2}\le\dfrac{x^3+y^3+z^3}{2xyz}+3\)
Rút gọn biểu thức:
\(P=\left(\dfrac{1}{xy\sqrt{y}}-\dfrac{1}{xy\sqrt{x}}\right):\left(\dfrac{1}{x^2+xy+2x\sqrt{xy}}+\dfrac{1}{xy+y^2+2y\sqrt{xy}}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)