ta có : \(x^2-8x+16=\left(x-4\right)^2\ge0\)
\(\Rightarrow\) bất phương trình \(x^2-8x+16< 0\) vô nghiệm
ta có : \(x^2-8x+16=\left(x-4\right)^2\ge0\)
\(\Rightarrow\) bất phương trình \(x^2-8x+16< 0\) vô nghiệm
1, giải bất phương trình
a, x^2 -6x+9>0
b, x^2-8x+16<0
Giải phương trình :
1) √x2+x+2 + 1/x= 13-7x/2
2) x2 + 3x = √1-x + 1/4
3) ( x+3)√48-x2-8x= 28-x/ x+3
4) √-x2-2x +48= 28-x/x+3
5) 3x2 + 2(x-1)√2x2-3x +1= 5x + 2
6) 4x2 +(8x - 4)√x -1 = 3x+2√2x2 +5x-3
7) x3/ √16-x2 + x2 -16 = 0
giải các phương trình sau:
a) \(\sqrt{x^2-2x+1}\)=\(x^2-1\)
b) \(\sqrt{x^2+x+\dfrac{1}{4}}\)=\(x\)
c) \(\sqrt{x^4-8x^2+16}\)=\(2-x\)
giải phương trình
a) x - \(\sqrt{x-1}\) -3 = 0
b)\(\sqrt{4x^2+8x+4}\) = x - 3
c) 2x + 5 +\(2\sqrt{2x+5}\) = 13
Giải bất phương trình: \(\frac{1-\sqrt{1-8x^2}}{2x}< 1\)
Giải phương trình \(\sqrt{16-8x-3x^2}=x^2+3x-4\)
giải bất phương trình 3x^2-x+1> 0
1:giải bất phương trình :x^2 -4x +10 <0
Giải phương trình:
\(4x^2+8\sqrt{x-1}=14-3x\)
Giải CHI TIẾT phương trình này bằng phương pháp tạo \(A^2+B^2=0\) hoặc \(A^2-B^2=0\) hộ mình cái ạ!