a) CĂN ký hiệu =v nhé
8 = 2.22 ; x2 -4xy + (2y)2 = (x-2y)2
=> A = 2v2/(x-2y)
b;c tương tự
a) CĂN ký hiệu =v nhé
8 = 2.22 ; x2 -4xy + (2y)2 = (x-2y)2
=> A = 2v2/(x-2y)
b;c tương tự
câu a \(\dfrac{\sqrt{m^3}+4\sqrt{mn^2}-4\sqrt{m^2n}}{\sqrt{m^2n}-2\sqrt{mn^2}}\left(m>0,n>0\right)\) câu b \(\dfrac{x\sqrt{x}-1}{x-1}\left(x>0\right)\) câu c \(\sqrt{50x^3y^5}-\dfrac{2y^2}{x^2}\sqrt{32x^7y}+\dfrac{3xy}{2}\sqrt{2xy^2}\)\(\left(x>0,y>0\right)\) câu d \(\left(x+2\right)\sqrt{\dfrac{2x-3}{x+2}}\) câu e \(\dfrac{a+b}{a}\times\sqrt{\dfrac{ab^2+ab^3}{a^2+2ab+b^2}}\left(a>0,b>-1\right)\)
Rút gọn
a) \(\dfrac{2}{x-3}\)\(\sqrt{\dfrac{x^2-6x+9}{4y^4}}\) (x < 3; y khác 0)
b) \(\dfrac{2}{2x-1}\)\(\sqrt{5x^2\left(1-4x+4x^2\right)}\) (x > 0.5)
Rút gọn:
\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
Giải::
ĐK: x khác +- 1
\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)
rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.
Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.
NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!
Giải phương trình:
1) \(x^4-2\sqrt{3}x^2+x+3-\sqrt{3}=0\)
2)\(\dfrac{1}{1+\sqrt{2x^2+1}}\)+\(\dfrac{\sqrt{x^2+1}}{1+\sqrt{x^2+1}}\)-\(\dfrac{32}{\sqrt{2\sqrt{2x^2+1}\left(1+\sqrt{2x^2+1}\right)+2\sqrt{\dfrac{1}{x^2+1}}\left(1+\sqrt{\dfrac{1}{x^2+1}}\right)+8}}\)= -7
3)\(2x^2\left(x-1\right)+x=\left(x-1\right)\sqrt{2x\left(x^2-x+2\right)}+6\)
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
Giải phương trình
a) \(\sqrt{12x^2+12x+19}+\sqrt{20x^2+20x+14}=6-4x-4x^2\)
b) \(\left(x+\dfrac{1}{x}\right)-4\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)+6=0\)
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt[2]{3}-\sqrt[4]{3x}+27-\sqrt{27x}\left(x\ge0\right)\)
b,\(\sqrt[3]{2x}-\sqrt[5]{8x}+\sqrt[7]{18x}+28\)
c, \(\dfrac{2}{x^2-y^2}.\sqrt{\dfrac{3\left(x+y\right)^2}{2}}\)
d, \(\dfrac{2}{2a-1}.\sqrt{5a^2\left(1-4a+4a^2\right)}\)
bài 2 : biến đổi đơn giản
a, \(\sqrt{7.6a^2.a^2}\)
b, \(\sqrt{\dfrac{4}{5}}\)
c, \(\sqrt{\dfrac{3}{2a^3}}\)(a>0)
d,\(\dfrac{7}{2\sqrt{5}}\)
e, \(\dfrac{10}{\sqrt{3}+1}\)
f, \(\dfrac{6}{\sqrt{5}-\sqrt{3}}\)
giải các phương trình
a \(\sqrt{7+\sqrt{2x}=3+\sqrt{5}}\)
b \(\sqrt{3x^2-4x}=2x-3\)
c\(\dfrac{\left(7-x\right)\sqrt{7-x}+\left(x-5\right)\sqrt{x-5}}{\sqrt{7-x}+\sqrt{x-5}}=2\)