Lời giải:
Phản chứng, tức là giả sử không tồn tại số nào trong các số đã cho chia \(19\) dư $1$
Khi đó các số đã cho chia $19$ có thể dư $0,2,3,...,18$ ($19$ loại số dư)
Mà từ \(10,10^2,...,10^{20}\) có $20$ số, nên theo nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{20}{19}\right ]+1=2\) số có cùng số dư khi chia cho $19$
Giả sử đó là: \(10^m,10^n(1\leq m< n\leq 20)\)
Khi đó: \(10^n-10^m\vdots 19\)
\(\Leftrightarrow 10^m(10^{n-m}-1)\vdots 19\)
\(\Rightarrow 10^{n-m}-1\vdots 19\) hay \(10^{n-m}\) chia $19$ dư $1$
Mà \(n-m\) chắc chắn thuộc trong khoảng từ \(1\to 20\) , tức là tồn tại số nằm trong các số đã cho chia $19$ dư $1$
Vậy điều giả sử sai. Ta có đpcm.
lớp 6 chỉ biết nguyên con vịt chưa biết đến nguyên lý chim bồ câu
Akai Huruma hok phải học lớp 6. Cho hỏi bạn học lớp mấy mà đỉnh dzệ
Mr. killer cũng hok phải lớp 6, Mình biết lớp 6 hok có dạng này. Cho hỏi học lớp mấy dzệ