1.Cho biểu thức A = \(\dfrac{x^2-y^2}{5x-5y}\)
a.Tìm điều kiện xác định của A
b. Rút gọn A
2.Cho biểu thức A = \(\dfrac{2x^2+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\) (x ≠ 0; x ≠ -2 ; x ≠ 2)
a.Rút gọn biểu thức A
b.Tính A khi x = 4
c.Tìm giá trị nguyên của x để A nhận giá trị nguyên
3.Cho 2 đa thức
A= 2x3 + 5x2 - 2x + a
B = 2x2 - x + 1
a.Tính giá trị của B tại x = -1
b.Tìm a để A ⋮ B
c.Tìm x để B = 1
1, a, để A có giá trị xác định <=> 5x-5y \(\ne\) 0 => 5x\(\ne\)5y =>x\(\ne\)y b, A=\(\dfrac{x^2-y^2}{5x-5y}=\dfrac{\left(x+y\right)\left(x-y\right)}{5\left(x-y\right)}=\dfrac{\left(x+y\right)}{5}\) 2, a,
A=\(\dfrac{2x^3+4x}{x^3-4x}+\dfrac{x^2-4}{x^2+2x}+\dfrac{2}{2-x}\) =\(\dfrac{2x\left(x+2\right)}{x\left(x^2-4\right)}+\dfrac{\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)}-\dfrac{2}{x-2}\) =\(\dfrac{2x\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x}-\dfrac{2}{x-2}\) =\(\dfrac{2x}{x\left(x-2\right)}+\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}-\dfrac{2x}{x\left(x-2\right)}\) =\(\dfrac{2x+\left(x-2\right)^2-2x}{x\left(x-2\right)}\) =\(\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}\) =\(\dfrac{\left(x-2\right)}{x}\)
b, thay x=4 vào A ta có : A=\(\dfrac{4-2}{4}\) =\(\dfrac{2}{4}=\dfrac{1}{2}\)
c, để A \(\in\) Z => (x-2)\(⋮\)x mà x\(⋮\)x =>-2\(⋮\)x => x\(\in\){ \(\pm1;\pm2\)} mà x\(\ne\)\(\pm2\) => x\(\in\left\{-1,+1\right\}\)
Bài 3 : a, Ta có B= 2.(-1)2+-(-1)+1 =2+1+1=4 b, Ta có A=2x3 +5x2 -2x +a =(2x3 -x2 +x )+(6x2-3x +3) +(a-3) \(⋮\) 2x2-x+1 => x(2x2-x+1)+3(2x2-x+1) +(a-3)\(⋮\) 2x2-x+1
=>a-3=0 (vì a-3 là số dư )=>a-3 Vậy a=3 thì A\(⋮\)B c,B=1 => 2x2 -x+1=1 =>x(2x-1)=0 => x=0 hoặc 2x-1 =0 => x=0 hoặc x=\(\dfrac{1}{2}\)