143. Tính: a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
b) \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
144. Tìm x từ đẳng thức:
a) \(\left(3x-2\right)\left(2x+3\right)-\left(6x^2-85\right)-99=0\)
b) \(2x+2\left\{-\left[-x+3\left(x-3\right)\right]\right\}=2\)
145. Đơn giản các biểu thức:
\(A\left(x,y\right)=5x\left(2x^n-y^{n-1}\right)-2x\left(x^n-3y^{n-1}\right)+4x\left(x^n-5y^{n-1}\right)\)
\(B\left(x,y\right)=1,4x.\left(0,5x-0,3y\right)-5\left(0,4y^2-4xy\right)+0,2y\left(8y+5x\right)\)
146. Thực hiện phép tính:
a) \(A=3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n+2}-y^{n+2}\right)\)
b) Tính giá trị:
\(B=\left(x^2y+y^3\right)\left(x^2+y^2\right)-y\left(x^4+y^4\right)\)với \(x=0,5;y=2\)
143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)
\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)
\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)
\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)
b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)
\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)
\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)
Rút gọn các đa thức đồng dạng, ta có kết quả:
\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)
Kết quả đã được xếp theo lũy thừa giảm dần của x