T nghĩ đề là phép + chứ nhỉ?! phép trừ thì s lm đc?!
\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\)
\(=\dfrac{1}{2}+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\)
\(=\dfrac{1}{2}+\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}+\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}+\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}+\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{201}{202}\)
p/s: Nghĩ vậy còn đề là trừ thì ~~ Chịu ~~
\(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{15}-\dfrac{1}{35}-\dfrac{1}{63}-...-\dfrac{1}{9999}\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{9999}\right)\)
\(=\dfrac{1}{2}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{99.101}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{100}{101}\)
\(=\dfrac{1}{2}-\dfrac{50}{101}\)
\(=\dfrac{1}{202}.\)