1.
ĐKXĐ: \(x\ge\frac{2}{3}\)
\(x^2+2x-1=2\sqrt{3x^3-5x^2+5x-2}\\ \Leftrightarrow x^2-x+1+3x-2=2\sqrt{\left(3x-2\right)\left(x^2-x+1\right)}\)
Đặt \(\sqrt{x^2-x+1}=a;\sqrt{3x-2}=b\), ta được:
\(a^2+b^2=2ab\\ \Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow\left(a-b\right)^2=0\\ \Leftrightarrow\left(\sqrt{x^2-x+1}-\sqrt{3x-2}\right)^2=0\\ \Leftrightarrow\sqrt{x^2-x+1}=\sqrt{3x-2}\\ \Leftrightarrow x^2-x+1=3x-2\\ \Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\left(t/m\right)\)
Vậy PT có nghiệm \(S=\left\{1;3\right\}\)
b, ĐKXĐ: \(x\ge1;y\ge1\)
Từ PT trên (gọi là 1), ta có:
\(\left(1\right)\Leftrightarrow2x\sqrt{y-1}+2y\sqrt{x-1}-x^2-y^2=0\\ \Leftrightarrow2\sqrt{x}\cdot\sqrt{xy-x}+2\sqrt{y}\cdot\sqrt{xy-y}-x^2-y^2=0\left(1a\right)\)
Áp dụng BĐT AM-GM, ta được:
\(\left\{{}\begin{matrix}2\sqrt{x}\cdot\sqrt{xy-x}\le x+xy-x=xy\\2\sqrt{y}\cdot\sqrt{xy-y}\le y+xy-y=xy\end{matrix}\right.\)
Suy ra:
\(VT\left(1a\right)\le-x^2+2xy-y^2=-\left(x-y\right)^2\\ \Rightarrow\left(x-y\right)^2\le0\)
ĐT xảy ra\(\Leftrightarrow x=y\)
Thay vào PT dưới (gọi là 2), ta được:
\(\left(2\right)\Leftrightarrow x^3=y^3=8\\ \Leftrightarrow x=y=2\left(t/m\right)\)
Vậy HPT có nghiệm \(x=y=2\).
Chúc bạn học tốt nha.