a/ \(\left(x^2-2x+2\right)\left(x^2-2x+5\right)=40\)
Đặt: \(x^2-2x+1=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\left(t+1\right)\left(t+4\right)=40\)
\(\Leftrightarrow t^2+5t-36=0\)
\(\Leftrightarrow t^2-4t+9t-36=0\)
\(\Leftrightarrow t\left(t-4\right)+9\left(t-4\right)=0\)
\(\Leftrightarrow\left(t-4\right)\left(t+9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-4=0\\t+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\left(tm\right)\\t=-9\left(ktm\right)\end{matrix}\right.\)
Ta có: t = 4 => \(x^2-2x+1=4\)
\(\Leftrightarrow\left(x-1\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy..............