1) Tính giá trị biểu thức C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\) 2) Chứng minh rằng với mọi số nguyên dương n ta đêu có \(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}}\) < 3 ( n căn bậc 4) Mọi người giúp em với ạ
2/ \(\sqrt{4+\sqrt{4+...+\sqrt{4}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{7+\sqrt{4}}}}}=3\)
1/ Ta có:
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\left(\dfrac{n^2+n+1}{n\left(n+1\right)}\right)^2}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow C=99+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\dfrac{9999}{100}\)
Bài 1 : Điều đầu tiên ta chứng minh được công thức :
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)
Ta có :
\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}=\dfrac{1}{b}+\dfrac{b}{a\left(a+b\right)}=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)
\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{4}-\dfrac{1}{5}+........+1+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=100-\dfrac{1}{100}=\dfrac{9999}{100}\)
Câu 1: \(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^3}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^3}}+\sqrt{1+\dfrac{1}{3^3}+\dfrac{1}{4^2}}+....+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)
= \(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{\left(1+1\right)^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{\left(1+2\right)^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{\left(1+3\right)^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{\left(1+99\right)^2}}\)
= \(|1+\dfrac{1}{1}-\dfrac{1}{2}|+|1+\dfrac{1}{2}-\dfrac{1}{3}|+|1+\dfrac{1}{3}-\dfrac{1}{4}|+.....+|1+\dfrac{1}{99}-\dfrac{1}{100}|\)
= \(1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}\)
= 2019-\(\dfrac{1}{100}\)