1. Tính giá trị biểu thức:
\(777:7+1331:11^3\)
\(=111+11^3:11^3\)
\(=111+1\)
\(=112\)
1.
\(777:7+1331:11^3=111+1331:1331=111+1=112\)
2.
\(2^{x+3}+2^x=36\\ 2^x\left(1+2^3\right)=36\\ 2^x\cdot9=36\\ 2^x=4\\ x=2\)
\(3^{x+4}+3^{x+2}=270\\ 3^{x+2}\cdot\left(3^2+1\right)=270\\ 3^{x+2}\cdot10=270\\ 3^{x+2}=27\\ x+2=3\\ x=1\)
\(\left(2x-5\right)^5=3^{10}\\ \left(2x-5\right)^5=3^{2\cdot5}\\ \left(2x-5\right)^5=\left(3^2\right)^5\\ \left(2x-5\right)^5=9^5\\ 2x-5=9\\ 2x=14\\ x=7\)
3.
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\\ 17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}>2^{55}\\ \Rightarrow31^{11}< 17^{14}\)
\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\\ 3^{453}=3^{3\cdot151}=\left(3^3\right)^{151}=27^{151}\\ 25^{150}< 25^{151}< 27^{151}\\ \Leftrightarrow5^{300}< 3^{453}\)