2:
a) Cách 1:
S = 2 + 22 + 23 + 24 + ... + 22018
2S = 22 + 23 + 24 + 25 + ... + 22019
Suy ra: S = 22019 - 2
Cách 2:
S = 2 + 22 + 23 + 24 + ... + 22018
= 111...1(2) (2019 chữ số 1)
2:
a) Cách 1:
S = 2 + 22 + 23 + 24 + ... + 22018
2S = 22 + 23 + 24 + 25 + ... + 22019
Suy ra: S = 22019 - 2
Cách 2:
S = 2 + 22 + 23 + 24 + ... + 22018
= 111...1(2) (2019 chữ số 1)
Tính :
a ) S= 2+4+6+...+2018 ( giải bằng hai cách )
b ) 10 + 102 +103 +...+10100 ( giaỉ bằng hai cách )
c ) \(S=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{100}}\)( giải bằng hai cách )
d ) \(S=\dfrac{1!}{3!}+\dfrac{2!}{4!}+\dfrac{3!}{5!}+....+\dfrac{2018!}{2020!}\)
biết rằng : n! = \(1\times2\times3\times...\times n\)
VD : 1! = 1
2! = \(1\times2\)
3! = \(1\times2\times3\)
4! \(1\times2\times3\times4\)
1. Tìm số tự nhiên n sao cho :
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{n.\left(n+1\right)}=\dfrac{2999}{3000}\)
2. Tính :
a ) \(S=2018.3+2018.4+2018.5+...+2018.2018\)
b ) \(\dfrac{1}{\sqrt{8}+\sqrt{10}}+\dfrac{1}{\sqrt{10}+\sqrt{12}}+\dfrac{1}{\sqrt{12}+\sqrt{14}}+...+\dfrac{1}{\sqrt{200}+\sqrt{202}}\)
c ) \(S=5.21^2+5.21^3+5.21^4+....+5.21^{2018}\)
d ) \(A=9+99+999+9999+...+9..9\)( 99 chữ số 9)
e ) 72+772+7772+...+77...72( 77 chữ số 7 )
2. Tính tổng :
a ) \(S=\dfrac{1}{3\sqrt{1}+3\sqrt{3}}+\dfrac{1}{3\sqrt{3}+3\sqrt{5}}+...+\dfrac{1}{3\sqrt{2017}+3\sqrt{2019}}\)
b ) S = \(\dfrac{1}{\sqrt{2.2}+\sqrt{2.3}}+\dfrac{1}{\sqrt{2.3}+\sqrt{2.4}}+\dfrac{1}{\sqrt{2.4}+\sqrt{2.5}}+...+\dfrac{1}{\sqrt{2.2018}+\sqrt{2.2019}}\)
Tính :
a ) S= 5+55+555+...+55...5 ( 50 chữ số 5 )
b ) S= 75+755+7555+...+755...5 ( 50 chữ số 5 )
c ) \(S=\dfrac{1}{\sqrt{1}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+...+\dfrac{1}{\sqrt{2017} +\sqrt{2019}}\)
d ) \(S=\dfrac{1}{\sqrt{3}+\sqrt{6}}+\dfrac{1}{\sqrt{6}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{12}}+...+\dfrac{1}{\sqrt{2016}+\sqrt{2019}}\)
(1) Phương trình nào sau đây là phương trình bậc nhất 1 ẩn
A. \(5y-1=0\) B.\(\sqrt{2y}+3=0\) C. \(\dfrac{1}{x-1}=3\) D.\(\dfrac{1}{2}-4x=0\)
(2) x= 1/2 là ngiệm của phương trình nào
A. 2x + 1 = 0 B. 3x - 2 = x - 1 C. 2x - 1 = x D. x^2 = 1
(3) Phương trình \(\dfrac{x+9}{6}-\dfrac{2\left(x+9\right)}{3}=\dfrac{x+9}{7}\) có tập nghiệm là:
A. S= \(\left\{6\right\}\) B. S = \(\left\{3\right\}\) C. S = \(\left\{-7\right\}\) D. S = \(\left\{-9\right\}\)
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
Giải phương trình:
b) \(\dfrac{7}{2}-\left(\dfrac{x}{5}-\dfrac{1}{4}\right)=\dfrac{9}{2}\)
c) (x+2) . (x-5). (x-6) (x+3) = 180
d) \(x-\dfrac{\dfrac{x}{2}-\dfrac{3+x}{4}}{2}=\dfrac{2x-\dfrac{10-7x}{3}}{2}-x-1\)
e) \(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+........+\dfrac{1}{10.110}\right).\left(x-3\right)=\dfrac{1}{1.11}+\dfrac{1}{2.12}+.......+\dfrac{1}{100.110}\)
Tính :
a ) \(S=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+.....+\dfrac{1}{\sqrt{100}+\sqrt{101}}\)
b ) \(S=\dfrac{1}{\sqrt{2}+\sqrt{4}}+\dfrac{1}{\sqrt{4}+\sqrt{6}}+...+\dfrac{1}{\sqrt{100}+\sqrt{102}}\)
tìm x,y viết dưới dạng phân số
a. \(5+\dfrac{x}{5+\dfrac{2}{5+\dfrac{3}{5+\dfrac{4}{5}}}}=\dfrac{x}{1+\dfrac{5}{2+\dfrac{4}{3+\dfrac{3}{5+\dfrac{1}{6}}}}}\)
b.
\(\dfrac{y}{3+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{3}}}}}}+\dfrac{y}{7+\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{4}}}}\)
= 2
c,
\(x.\left(\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1}}}}}}}}\right)=\)\(2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2}}}}}}}\)+\(x.\left(3+\dfrac{1}{3-\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{3-\dfrac{1}{3}}}}}\right)\)
Giair bằng máy tính casio
Bài 1: Giải phương trình
\(a,\dfrac{x+1}{2009}+\dfrac{x+3}{2007}=\dfrac{x+5}{2005}+\dfrac{x+7}{1993}\)
\(b,\left(x+2\right)^4+\left(x+4\right)^4=14\)
\(c,\left(x-3\right)\left(x-2\right)x+1=60\)
d, \(2x^4+3x^3-x^2+3x+2=0\)